2017-9-4 : Kaslo Bolide/Meteorite – by Rick Nowell

Last Sunday a huge fireball lit up Cranbrook’s whole western horizon.  From high up, first a swiftly moving ball of yellow light caught the eye.  It rapidly gained brightness, until it turned into a blue-white welding arc.  A small orange globule broke off and followed it along its wake.  Then it suddenly flared and a spray of brilliant white light flashed out and lit all the sky for miles around and casting shadows on the ground.  A large blue-white fireball zipped out of that dazzling light, with one smaller orange fireball chasing after it, slowing down and dropping over the horizon into the smoke haze until it dimmed out of sight.  Minutes later, a dull rumbling sound like thunder grumbled in the distance.

In disbelief a witness in Crawford Bay “almost ducked” as she saw it rocket close overhead, the eerie silent blue-white fireball and behind it two smaller reddish-orange balls falling away and arcing down not too far away to the North.  There was a quiet pause as she looked North wondering—what was that?  Then KRACK-WHAMMMM! recoiled to the tremendous crash of a sonic boom–so loud she felt it vibrate inside her chest, then a crackle and continuous waterfall of noise as the air tumbled back in to fill the tunnel of low pressure air the supersonic fireball had rammed through the sky.  For an endless twenty seconds this shook the house, rattling the windows, the garage doors and even the ground before dying away.  For a second she imagined it was a nuclear bomb blast.  I’m not kidding, it was that loud! she said.

Was it a small nuke?  NASA’s JPL website reported a monitoring satellite saw an air blast at 36km altitude equivalent to 0.13 kilotons of TNT.

Attachment KasloMeteor.gif above is a GIF slideshow with frames displayed every half second.  When viewed in webmail or on a web browser, it will play the animation.  Moon at lower left.  Photo credit COTR meteor cam 4 Sep 2017.

But videos show it was a meteor, a rock from outer space, with pieces falling off as it went along.

So, where did it hit the ground?  BC has a network of meteor cam stations watching to find where these hit.  The College of the Rockies has a meteor cam, and it tracked it for about ten seconds, starting from 11:11:26pm.   Six or more security cam videos saw it.  One good video from Spokane (near Gonzaga University) was used with the College video, and a photo from just South of Crawford Bay near the marina, to triangulate where the meteor hit and was able to give us a good idea.  Esko Lyytinen, a retired mathematician of the Finnish Fireball Network, kindly analyzed our video.  Summarized as follows:

The main 50kg piece would have hit about 5km East of Kaslo around: (49.8731 N,  116.8457 W).  “It flew directly over Crawford Bay but not as far as Meadow Creek”.  The main piece was last seen at 49.7603 N, 116.8350 W, still 18.9km high​.   The 100g sized fragment from the brightest flash would have hit 2.5 km South and 1km East of Riondel at around (49.7381 N, -116.8393 W).  The winds may have moved the main fragment about 750  m to the East and the 100 g fragments about 1.7 km to the East.  Thus the NE area of Crawford Bay would probably be favorable for finding fragments.  As well as from Gray Creek North to Crawford Bay along the road.   But fragments can veer in direction: after talking to witnesses, Dr. Alan Hildebrand is worried the main piece may have gone into Kootenay Lake. 

These fragmented meteors don’t make craters, craters are usually made by much larger solid nickel-iron ones.  This meteor was likely slowed down to around 200 km/h by the time it reached “dark flight”.  ​If the basket-ball sized 50kg chunk hit soft ground, it would have left a big dent about as deep as its diameter, then bounced up and landed on the surface again.   Unless it hit solid bedrock and shattered.  The smaller fragments (100g would be around golf ball sized) would have just bounced like normal rocks.

Meteorites that strike the ground are not smoking hot as depicted in Hollywood movies, so there is no need to worry about them starting a forest fire. They start off cold in outer space (about zero degrees C for meteoroids around Earth’s orbit).  Their outer surface gets white hot as it compresses the air into a plasma sheath, but this blowtorch heat is slow to penetrate the rock.  This hot layer fuses and evaporates and is blown off as droplets, dust and vapour before it can heat the inside.  So the inside remains cool during the brief 10 second fiery fall through the atmosphere. It’s rare to find a hot or warm meteorite, some have even been found with frost on them.  But the outside skin often has a one millimetre thick melted “fusion crust” with thumb-sized worn hollows.

Video Frame at 11:11:34.066 seconds showing fireball and pieces falling off along path (photo rotated).  Photo Credit R. Nowell, COTR Meteor Cam.

Judging from factors like how high it fragmented, porosity, speed, cometary orbit from beyond Pluto,  Esko is betting it’s a common, stony non-metallic meteorite, a “chondrite”.  These are the most common types, they make up 86% of meteorites that are recovered.  Formed of dust, clay and small sand grains surrounding “chondrules”: small beads of silicate minerals like olivine and pyroxene.  (Olivine is a magnesium iron silicate common on Earth but quickly weathered).  May contain small amounts of magnetite, nickel-iron, or even flakes of metal.   Density about 3.5 g/cm^3 as heavy as basalt rock.  Very old, from primitive asteroids originating from the early solar system 4.5 billion years ago

Chondrite Meteorite.  Polished face showing chondrules and metal flakes.  Dark shiny fusion crust.  Photo Credit H. Raab, CC Wikipedia article. https://en.wikipedia.org/wiki/Chondrite

Since it had a cometary orbit of about 50AU, Esko supposes it may even be a carbonaceous chondrite with lighter density.  That is a rare type of primitive meteorite with organic compounds such as water, amino acids and hydrocarbons.

WHAT TO LOOK FOR: Chondrites:   Look for rocks that a magnet will stick to.  The surface may have a thin grayish fusion crust (a thin melted layer one or two millimetres thick) and scattered thumb sized hollows (worn away by atmospheric friction called regmaglypts).  Although rarer meteorites like the Tagish Lake carbonaceous chondrite meteorite looked like black charcoal briquettes.


Ignore layered sedimentary rocks (shale, limestone, dolomite) since these require an ocean to form, and this wouldn’t be found on an asteroid in outer space.  Also, if it has holes or bubbles inside (like pumice) that was likely from lava flows (basalt-magma) cooled with trapped volcanic gases, on Earth (although there are rare exceptions: a large asteroid like Vesta had volcanoes).  Also, ignore rocks containing quartz or calcite, since they form in high pressure, hot watery solutions.


Magnets: Since a lot of chondrite types contain iron oxides like magnetite, and some metal rich ones contain nickel-iron chondrules, a rare-earth magnet should stick to most.


Value:  If a hiker finds a piece, it could be worth a lot of bucks per gram or it may be disappointing. Common iron meteors are only $.50/gram to $5/gram, rarer stony meteorites $2 to $20/gram, and really rare ones $100 or $1000/gram or more, depending if they have embedded gems or if they’re from Mars or the Moon. And some meteors are dense and heavy, so they go a long way. For example, back in 2000, the rare carbonaceous chondrite meteor that landed on frozen Tagish Lake on the B.C.-Yukon border brought Jim Brook, the lodge owner who found it an estimated $850,000. The University of Alberta, with Canada’s second-largest meteorite collection, bought most of the meteorite.  For sample meteorite pricing, see http://www.meteorlab.com/METEORLAB2001dev/offering21o.htm

The Washington University in St. Louis has a great webpage showing all sorts of meteorites at http://meteorites.wustl.edu/id/metal2.htm.

If you do find a possible meteorite, send a photo to Dr. Hildebrand.  Note that American Meteor hunters have to report to the Canadian Customs, Canada has export restrictions on them.


Above is a flow chart guide designed by Deborah Guedes in Brazil to help identify a meteorite.  http://www.lpi.usra.edu/meetings/metsoc2010/pdf/5357.pdf  “Regmaglypts” are those worn-away thumb sized hollows in the surface.


The College meteor camera has seen large fireballs or bolides of over 100 kg that hit the ground about four times in the past six years.  The last was:
– December 20, 2014 over Canal Flats, BC hitting by Marconi Peak on White Swan Lake road. This was possibly a rare carbonaceous chondrite.
– September 26, 2011 over Banff, AB, hitting in the park.
– May 14, 2011 over Creston, BC, hitting by Duck Lake.

With shared videos from other ground stations in the BC Meteor network, like West Kelowna, Penticton, Courtney, Vancouver or Prince George, we can triangulate where these have impacted to within 2 or 3 kilometers. We then have a chance to find these rare meteorites and to find out what they contain.

College of the Rockies also belongs to the Sandia National Laboratory North American meteor network, and we upload videos of fireballs to there.”​

Rick Nowell
Astronomy Lab Tech
College of the Rockies

2017-9-4 : Kelowna Meteor – by Rick Nowell

SEE ALL LATEST DISCUSSIONS ON OUR FORUM : http://bcmeteors.net/?page_id=657&view=forum&id=8

The Cranbrook College of the Rockies meteor camera tracked last night’s fireball high over Nelson and Kootenay Lake.

Allsky video

It lasted for about ten seconds, from 05:11:26 until 05:11:37 UT.  For a brightness comparison, note the full Moon in the lower left part of the video is totally out shone by the fireball when it flares.  There is no sign of the fireball breaking up and exploding.

This video movie m20170905_051126_000.mp4, is taken with a fisheye lens that sees all the sky.  North is directly up, East to the left, West to the right, and South below.

There is also video there (MeteorCranbrook_20170904_221017.mov) from my dash cam showing the fireball flash as seen from Cranbrook,BC. (showing only the flash, which is not as spectacular, lighting up the smoke haze).

Attached find a google map of the Kaslo, Meadow Creek, BC area.


The American Meteor Society estimates it terminated over Meadow Creek, BC.  (Meadow Creek is 30km North of Kaslo along Kootenay Lake, or about 70km North of Nelson)

More than 90 fireball reports from 6 states (CA and USA)
The AMS has received over 90 reports so far about of a fireball event seen above the state of British Columbia (Canada) on September 4th, 2017 around 10:14pm PDT (September 5th, 2017 ~ 05:14 Universal Time). The fireball was seen primarily from British Columbia but was also seen from Alberta and Saskatchewan as well as from Washington, Idaho and Montana. According to our latest estimated trajectory, the fireball traveled in a southeast to northwest direction entering the atmosphere near the small city of Boswell and terminating near Meadow Creek, British Columbia.

Excerpt from https://www.amsmeteors.org/2017/09/british-columbia-fireball-september-4th-2017/



The American Meteor Society site has reports from Bowen Island BC, Spokane Washington, Calgary Alberta, Claresholm, Alberta,  Vanscoy Saskatchewan, Post Falls Idaho, Creston BC, Nelson BC, Troy Montana etc.



I caught the fireball flash on my dash cam in Cranbrook at 11:11pm MDT.  Here’s a couple of frames taken from Cranbrook by King Street, looking West, before and after.  You can see the “CRANBROOK” sign lit up by the flash on the left.  I didn’t hear any thunder in Cranbrook.  Looks like it fell around Creston or Nelson.  People report hearing a sonic boom in Creston, and it rattled the windows in Nelson and Riondel.


(Note my dashcam clock is on Pacific time, says 22:10; which is 23:11 MDT, since it’s a minute slow).  So UT that would be Sep 5 at 05:11.



Susan from Riondel, BC mentioned “There was a tremendous flash, an bright orange and yellow ball, then about 30 seconds later a continuous loud rumbling noise.  The sound lasted a long time, and the ground shook.”  For a second she thought it might be the North Koreans sending an atomic bomb, it was that loud.


Rick Nowell

Astronomy Lab Tech

College of the Rockies

2700 College Way

Cranbrook, BC

V1C 5L7

2017-9-4 : Bright flash due east of Kelowna BC

Latest News

Jeff Swayze

At approximately 10:15 PM pacific time I witnessed a bright flash due east of kelowna BC. I assume it was dry lightning, so I posted on facebook if anyone in my area had witnessed the flash. A local friend reported a similar post from one of their friends in Nelson BC at the same moment. I then assumed it could only be a meteor impact with the ionosphere for such a bright flash to occur and not repeat as with dry lightning. I assume more reports will follow.

Jeff Swayze
Kelowna BC


Hi just found your website after seeing the whole sky light up south to north over Nelson BC and then 3 min later heard a huge explosion and felt my house rumble!!! It is a smokey but clear night. Wondering if you have any info about this? Craziest thing I’ve seen and felt!!! Cheers, let me know.



Kevin Skrepnek @KevinSkrepnek

Well, that was different: while sitting on a patio in #NelsonBC the entire sky lit up and a meteorite came down. Huge boom about 1m later.

  7 hours ago

I saw a bright green fireball over Bowden area near Red Deer AB.

  6 hours ago

Replying to 

I seen the meteorite in Calgary at 11:20 p.m. last night. It happened so fast that I could not get a picture of it.

2017-9-1: Asteroid 3122 Florence

Sky and Telescope has prepared four detailed charts to help observers locate 3122 Florence this week. Two of these show the asteroid’s general motion northward among the constellations. Two more show small areas of sky, plotting all stars brighter than magnitude 9.5, for North American observers on the evenings of August 29-31 and September 1-3. Note that the detailed charts are labeled for Universal Time (GMT), and you’ll have to apply a time-zone correction for your location (for example, 0h UT on August 31st corresponds to 8 pm EDT on August 30th).

During its visit, Florence will be traveling roughly south to north, crossing through the constellations Capricornus, Aquarius, Delphinus, Vulpecula, and Cygnus. An especially good opportunity occurs at about 8 pm Eastern Daylight Time on Saturday evening, September 2nd, when the asteroid crosses the quartet of 4th-magnitude stars that mark the head of Delphinus, the Dolphin. It will be gliding northward by a little less than the full Moon’s diameter each hour, motion that should be obvious by watching the asteroid’s starlike pinpoint through a telescope for just a few minutes.

Florence appears this bright, despite being far away, both because it’s among the largest near-Earth asteroids (2.7 miles across) and it has a fairly bright surface that reflects more than 20% of the sunlight that strikes it. (For comparison, the Moon’s average reflectivity is just 12%.) Although it rotates in just 2.4 hours, this asteroid must be nearly spherical because its brightness varies by no more than about 11% – too small a change to pick up by eye.

2017-8-14 : Asteroid to shave past Earth on Oct 12: ESA By Mariette Le Roux Paris

A house-sized asteroid will shave past our planet on October 12, far inside the Moon’s orbit but without posing any threat, astronomers said Thursday.  The space rock will zoom by harmlessly at a distance of about 44,000 kilometres (27,300 miles) — an eighth of the distance from the Earth to the Moon, according to the European Space Agency. This is just far enough to miss our geostationary satellites orbiting at about 36,000 kilometres.

“We know for sure that there is no possibility for this object to hit the Earth,” Detlef Koschny of ESA’s “Near Earth Objects” research team told AFP. There is no danger whatsoever.”

The asteroid, dubbed 2012 TC4, first flitted past our planet in October 2012 — at about double the distance — before disappearing from view.  It is about 15-30 metres (49-98 feet) long, and was travelling at a speed of some 14 kilometres (nine miles) per second when spotted.  Scientists expected the asteroid to return for a near-Earth rendezvous this year, but did not know how close it would get.  Now, the Very Large Telescope of the European Southern Observatory (ESO) in Chile has managed to track the rock down, some 56 million kilometres away, and determine its trajectory.

“It’s damn close,” said Rolf Densing, who heads the European Space Operations Centre in Darmstadt, Germany. “The farthest satellites are 36,000 kilometres out, so this is indeed a close miss,” he told AFP.

For researchers, the near miss will provide a rare chance to test Earth’s “planetary defence” systems — which at this point are focused on early warning rather than active asteroid deflection.

Observing TC4’s movements “is an excellent opportunity to test the international ability to detect and track near-Earth objects and assess our ability to respond together to a real asteroid threat,” said an ESA statement.  Asteroids are rocky bodies left over from the formation of our solar system some 4.5 billion years ago.  There are thought to be millions of them, most of them in a “belt” between the orbits of Mars and Jupiter.

A space rock slightly bigger than TC4, at 40 metres, caused the largest Earth impact in recent history when it exploded over Tunguska, Siberia, in 1908.

In 2013, a meteoroid of about 20 metres exploded in the atmosphere over the city of Chelyabinsk in central Russia with the kinetic energy of about 30 Hiroshima atom bombs.

The resulting shockwave blew out the windows of nearly 5,000 buildings and injured more than 1,200 people. It caught everyone unawares.

If an object the size of TC4 were to enter Earth’s atmosphere, “it would have a similar effect to the Chelyabinsk event,” said the ESA.

But Earth’s atmosphere stretches only a few hundred kilometres far, and TC4 will comfortably miss it. Also, it would likely behave very differently to the Chelyabinsk object.

“The Chelyabinsk meteoroid was a piece of comet and they are usually made of icy material,” said Densing. “Due to the icy nature it probably dissipated in the atmosphere… When we’re talking about asteroids, this is solid material. They are mostly made up of iron, so will not so easily dissipate their energy in the atmosphere.”

TC4 is unlikely to shed any debris into the atmosphere.

Even if it did, no evacuation would be required for an object this size, said Koschny, merely a warning for people to stay away from windows that could shatter from the shockwave.

Densing, who has previously warned that humanity is not ready to defend itself against an Earth-bound object, said he would not lose any sleep, not over this one.  “However, it makes you wonder what will happen next time,” he said.  “I would have felt a bit more comfortable if we… had a longer pre-warning time.”


2017-8-7 : Meteor Echoes Live Stream: livemeteors.com

When a meteor enters the Earth’s upper atmosphere it excites the air molecules, producing a streak of light and leaving a trail of ionization (an elongated paraboloid) behind it tens of kilometers long. This ionized trail may persist for less than 1 second up to several minutes, occasionally. Occurring at heights of about 85 to 105 km (50-65 miles), this trail is capable of reflecting radio waves from transmitters located on the ground, similar to light reflecting from a mirrored surface. Meteor radio wave reflections are also called meteor echoes, or pings.



Reporting Sightings

QUICK REPORT : https://www.amsmeteors.org/members/imo/report_intro

Please capture sighting on video as quickly as you can possibly react.

General Guidance

A fireball is another term for a very bright meteor, generally brighter than magnitude -4, which is about the same magnitude of the planet Venus as seen in the morning or evening sky. A bolide is a special type of fireball which explodes in a bright terminal flash at its end, often with visible fragmentation.

If you happen to see one of these memorable events, we would ask that you report it here to the American Meteor Society, remembering as many details as possible. This will include things such as brightness, length across the sky, color, and duration (how long did it last), it is most helpful of the observer will mentally note the beginning and end points of the fireball with regard to background star constellations, or compass direction and angular elevation above the horizon.

Individual reports are shared with other interested organizations, and saved for statistical study purposes. Reports are also shared with the general public in the form of our Fireball Sightings Log, which allows visitors to monitor the fireball activity which is reported to us from across North America, over the course of a given year. Although the AMS does not pursue fireball reports with the intent of recovering meteorites, we do notify relevant planetary scientists when promising events occur in their local geographic areas, for them to pursue as they wish.


Extra Canadian Reporting

Check : http://www.skyscan.ca/fireballs.htm

Feel free to phone at reasonable hours : 250-598-6692 in Victoria, BC