Solar eclipse of Monday, Aug 21, 2017

SOLAR ECLIPSE TIME max lasting for about 2min over Vancouver, to 2min 17sec as you go to Eastern BC.

Here are times for cities across BC and Alberta. There are four numbers: the local times for the start, maximum and end, and the maximum fraction of the solar diameter covered: Victoria (09:08, 10:20, 11:37, 91%), Vancouver (09:10, 10:21, 11:37, 88%), Penticton (09:13, 10:25, 11:42, 87%), Cranbrook (10:16, 11:30, 12:48, 85%), Calgary (10:20, 11:33, 12:50, 81%), Edmonton (10:24, 11:35, 12:49, 75%).


TELESCOPE: if you setup a telescope (with a solar filter and video camera) the Sun should be seen safely on a video display.  We may see sunspots at the centre of the disc, even though the Sun is nearing sunspot minimum.

SPEED OF THE MOON’S SHADOW:  If it’s hazy with forest fire smoke, try going 7000 feet up a mountain to get clearer views.  From a mountain top, I wonder if I’ll be able to see the shadow of the Moon sweeping in from the West?  Over Eastern BC, It’s approaching at around 3,000 km/h; or 0.833 km/s.  That’s 2.5x the speed of sound, so a military jet could keep up with it, but a car can’t.  The totality shadow will be about 109km wide, and take just over 2 minutes to pass.  Source:

PATH OF TOTALITY: The Map of totality below shows you’ll have to go 500 km South of the US border to Salem, Oregon or to Idaho Falls in Idaho to get the full effect.

Map by Xavier Jubier.  http:\\

ECLIPSE GLASSES:  So, where to get adequate eyewear, sunglasses won’t do!  You can send away for cardboard eclipse glasses (mine haven’t arrived yet), but be sure they are very dark, like shade 14.  Try getting some welders replacement lenses; again, shade 14 is safest.   They are rectangular glass plates, about 4” x3” x2”.  They should be available locally at Air Liquide, or Acklands, or other welders supply place (unless they are already all sold out).
EYESIGHT WARNING: When you look at the Sun, the lens in your eyeball acts as a burning glass, and the target is the back of your eye, where imaging happens. You can also damage the protein jelly, or “aqueous humour” that fills your eyeball. The damage can be permanent. Staring at the Sun using a telesc​ope or binoculars that have not been modified for solar observing could likewise lead to permanent damage. A pair of 10×50 binoculars (10 times magnification, 50mm objective lenses), will collect between 50 and 100 times the amount of light and heat that your eye lens will collect. Permanent damage will be near instantaneous. There is specialist hardware that can be used with telescopes and binoculars that make them usable for safe solar observing. However, unless you are completely familiar with these devices and how to use them… DON’T. If you are not an expert then go find one.”  Quote from Ken Tapping, astronomer at Penticton, BC.

SOLAR PROJECTION: (adults only please) using a spotting scope or binoculars (or a magnifying glass).  Set it up on a tripod, and focus the telescope at infinity (a mountain first).  Then hold a white square of cardboard about a foot away from the eyepiece, or against a white wall (some telescopes come with a little arm and clip for this purpose).  The cardboard should be in a shadowed area.  Be careful not to look through the eyepiece of the scope (or the finderscope!)–just look at the shadow of the scope on the ground to point it at the Sun.  Centre the image of the Sun on the white card.  Move the cardboard close for a smaller/brighter image; and further away for a bigger/dimmer image. That way you get enough magnification to see sunspots too. (Galileo pioneered this projection technique back in 1612.  He didn’t go blind until he was 72, and that was from cataracts.)

FIRE AND BLINDING DANGER: Don’t hold the cardboard too close or you’ll burn a hole through it.  Don’t try to look through the eyepiece,  or you’ll burn a hole in your eye’s retina.  Don’t goof-up or you’re permanently blind.  Watch out for kids around you.  Don’t leave unattended.  Don’t burn your finger or start a fire!  (That said, I did this in grade 11 astronomy class and nobody had any trouble.)

2017-8-14 : Asteroid to shave past Earth on Oct 12: ESA By Mariette Le Roux Paris

A house-sized asteroid will shave past our planet on October 12, far inside the Moon’s orbit but without posing any threat, astronomers said Thursday.  The space rock will zoom by harmlessly at a distance of about 44,000 kilometres (27,300 miles) — an eighth of the distance from the Earth to the Moon, according to the European Space Agency. This is just far enough to miss our geostationary satellites orbiting at about 36,000 kilometres.

“We know for sure that there is no possibility for this object to hit the Earth,” Detlef Koschny of ESA’s “Near Earth Objects” research team told AFP. There is no danger whatsoever.”

The asteroid, dubbed 2012 TC4, first flitted past our planet in October 2012 — at about double the distance — before disappearing from view.  It is about 15-30 metres (49-98 feet) long, and was travelling at a speed of some 14 kilometres (nine miles) per second when spotted.  Scientists expected the asteroid to return for a near-Earth rendezvous this year, but did not know how close it would get.  Now, the Very Large Telescope of the European Southern Observatory (ESO) in Chile has managed to track the rock down, some 56 million kilometres away, and determine its trajectory.

“It’s damn close,” said Rolf Densing, who heads the European Space Operations Centre in Darmstadt, Germany. “The farthest satellites are 36,000 kilometres out, so this is indeed a close miss,” he told AFP.

For researchers, the near miss will provide a rare chance to test Earth’s “planetary defence” systems — which at this point are focused on early warning rather than active asteroid deflection.

Observing TC4’s movements “is an excellent opportunity to test the international ability to detect and track near-Earth objects and assess our ability to respond together to a real asteroid threat,” said an ESA statement.  Asteroids are rocky bodies left over from the formation of our solar system some 4.5 billion years ago.  There are thought to be millions of them, most of them in a “belt” between the orbits of Mars and Jupiter.

A space rock slightly bigger than TC4, at 40 metres, caused the largest Earth impact in recent history when it exploded over Tunguska, Siberia, in 1908.

In 2013, a meteoroid of about 20 metres exploded in the atmosphere over the city of Chelyabinsk in central Russia with the kinetic energy of about 30 Hiroshima atom bombs.

The resulting shockwave blew out the windows of nearly 5,000 buildings and injured more than 1,200 people. It caught everyone unawares.

If an object the size of TC4 were to enter Earth’s atmosphere, “it would have a similar effect to the Chelyabinsk event,” said the ESA.

But Earth’s atmosphere stretches only a few hundred kilometres far, and TC4 will comfortably miss it. Also, it would likely behave very differently to the Chelyabinsk object.

“The Chelyabinsk meteoroid was a piece of comet and they are usually made of icy material,” said Densing. “Due to the icy nature it probably dissipated in the atmosphere… When we’re talking about asteroids, this is solid material. They are mostly made up of iron, so will not so easily dissipate their energy in the atmosphere.”

TC4 is unlikely to shed any debris into the atmosphere.

Even if it did, no evacuation would be required for an object this size, said Koschny, merely a warning for people to stay away from windows that could shatter from the shockwave.

Densing, who has previously warned that humanity is not ready to defend itself against an Earth-bound object, said he would not lose any sleep, not over this one.  “However, it makes you wonder what will happen next time,” he said.  “I would have felt a bit more comfortable if we… had a longer pre-warning time.”


Welcome to the British Columbia Meteor Network

The British Columbia Meteor Network and its associate members are dedicated volunteers who have worked together to advance knowledge of meteor science. Some of our members are professionals although most are devoted amateurs.

The network is comprised of a video detection component as well as a radio detection component. We  share our data with multinational governments and astronomy groups.

Data collection is only one goal of the the network. We also hope to promote a strong educational program in open cooperation with the school districts and community colleges of British Columbia.

Feel free to browse our site. Likewise, feel free to contact us if you have any questions or would like to know more.

British Columbia Meteor Network Coverage Map



Click here to see the full resolution map.

For a brief history of how the network got started please read Ed’s article.


2017-8-7 : Meteor Echoes Live Stream:

When a meteor enters the Earth’s upper atmosphere it excites the air molecules, producing a streak of light and leaving a trail of ionization (an elongated paraboloid) behind it tens of kilometers long. This ionized trail may persist for less than 1 second up to several minutes, occasionally. Occurring at heights of about 85 to 105 km (50-65 miles), this trail is capable of reflecting radio waves from transmitters located on the ground, similar to light reflecting from a mirrored surface. Meteor radio wave reflections are also called meteor echoes, or pings.


2017-8-1 : Welcome to our newly refreshed website

We are delighted to finally move the website into the latest and best WordPress environment, loaded up with all our wonderful historic data and images.

As we now have the ability to regularly change the look and feel, we will do our best to find a style everyone likes best, and then we will freeze it for a year to give you a chance to get to know the content, menu and all the tools we have utilized.

Rick Nowell

William E. (Bill) Smith

Jeff Brower


Reporting Sightings

Please capture sighting on video as quickly as you can possibly react.

General Guidance

A fireball is another term for a very bright meteor, generally brighter than magnitude -4, which is about the same magnitude of the planet Venus as seen in the morning or evening sky. A bolide is a special type of fireball which explodes in a bright terminal flash at its end, often with visible fragmentation.

If you happen to see one of these memorable events, we would ask that you report it here to the American Meteor Society, remembering as many details as possible. This will include things such as brightness, length across the sky, color, and duration (how long did it last), it is most helpful of the observer will mentally note the beginning and end points of the fireball with regard to background star constellations, or compass direction and angular elevation above the horizon.

Individual reports are shared with other interested organizations, and saved for statistical study purposes. Reports are also shared with the general public in the form of our Fireball Sightings Log, which allows visitors to monitor the fireball activity which is reported to us from across North America, over the course of a given year. Although the AMS does not pursue fireball reports with the intent of recovering meteorites, we do notify relevant planetary scientists when promising events occur in their local geographic areas, for them to pursue as they wish.

Extra Canadian Reporting

Check :

Feel free to phone at reasonable hours : 250-598-6692 in Victoria, BC


2017-4-19 : Passing Asteroid of 19 Apr 2017

Ken Tapping, April 19, 2017

On 19 April an asteroid will pass close by. At its closest it will be less than five times the distance of the Moon. The asteroid, named 2014 JO25, is about 600 metres across. It will scoot across our northern sky in a few hours, moving at 33.5 km/s. It will be closest to us at 08:24 EDT, 05:24 PDT. However, to see it you’ll need a telescope.

If it were made of basalt, like the Moon, it would have a mass of some 300 million tonnes. This is the biggest object in about 13 years to pass this close. A rough estimate suggests on average we could be hit by something that size every million years or so. Such an event would certainly be a disaster, but it would not be likely to endanger our existence. Smaller objects pass within that distance every week and on average one of them could hit us every 80 years.

The Moon is peppered with craters due to impacts. The Earth has been hit at least as often, but weathering and the continuous recycling of the Earth’s surface due to subduction and the emergence of new land surface have erased most of them. However, there are still conspicuous craters on the Earth’s surface. These cosmic collisions are not unusual; they are just part of the ongoing process of planet building.

The Earth itself was formed through impacts, as dust and progressively larger lumps of material smashed together some 4.6 billion years ago. Some of that material contained ice, which brought us the water to make our oceans. Fortunately most of that primordial “building material” has been used, but there are still pieces of it orbiting the Sun. A piece of this material some 12km across smashed down in the Sudbury area in Ontario about 1.8 billion years ago. The geological disturbance brought a wealth of minerals closer to the surface and concentrated them.

One of the most well-known and dramatic impacts occurred about 64 million years ago. After 180 million years of stability, environmental change and habitat loss was putting many species, such as the dinosaurs and ammonites into a steady decline. Then a 10km diameter asteroid hit the Earth, leading to such a rapid environmental change that 75% of species became extinct, including the dinosaurs and ammonites. In 1908 something entered the atmosphere and exploded over Tunguska, Siberia. Over 2000 square kilometres were flattened, and glasses rattled on shelves in Paris, France. A tiny difference in arrival time could have put that impact in Europe.

Today, our species dominates the Earth. Feeding ourselves and providing for our other needs involves heavily exploiting our planet’s resources. That means we are becoming increasingly vulnerable to any sort of environmental disaster. Can we do anything to reduce the impact risk? This involves two problems: detecting impact threats and then somehow mitigating them.

Small, dark objects on a dark background are hard to see. We usually detect them just in time to watch them sail past. Current radar methods are no better. In principle we can use our observations to assess the possibilities of future collisions. This is rendered difficult by all our data being obtained over a tiny part of the orbit, and the perturbation of that orbit by little tugs by the other planets. This means that unless we can give threatening asteroids a really big “shove”, changing the orbit by more than the uncertainties in our calculations, we might turn a miss into a hit. Unfortunately, as yet we don’t know how to give objects with masses of millions of tonnes a big shove. Blowing them up, as in the movies, would just turn one threat into many. However, the detection and mitigation of cosmic impact threats are getting a lot of attention.

Ken Tapping is an astronomer at the Dominion Radio Astrophysical Observatory, Penticton, BC.