2014-12-14 : Geminid Meteor Shower

One of the best meteor showers during the year are the Geminids, which occur annually on Dec 14. Earth enters the fringes of their orbit from Dec 4 until Dec 17. The peak of 120 meteors per hour, should be from Saturday noon Dec 13, until Sunday morning 10am Dec 14, 2014.

The skies were dark, since the Moon didn’t rise until after midnight. Although both nights it got cloudy around 1am where I am near Cranbrook, BC. The meteors were generally bright, medium fast speeds of 35km/s, and different colours. I saw white and red. This shower has some mass sorting, with small dust arriving the first day, followed by grains of sand, then pebbles a day later. It’s debris from a 5km diameter asteroid, 3200 Pheathon.

Dec 16 is also the peak for a smaller meteor shower, the Coma Berenicids, with a peak of 3 meteors per hour.

Geminid Meteor Streak

Geminid Meteor by Big Dipper

I took three Nikon cameras out. I goofed on one camera, I had it set for just ISO 1000. That captured two meteors in Ursa Minor, and that’s why they were so dim. The other two cameras were set at 3200 ISO, which is optimum. The max is 6400, but that can be snowy. The slight background brown glow is woodsmoke and thin cloud, the camera sensor shows haze like that. This was a Vivitar 28mm f/2.5 lens, hooded against the frost. All the tripods and camera equipment quickly frosted over at the -7 deg temperatures.

I was out again Sunday evening by Horseshoe Lake, with clouds over Orion. I got a hundred more photos and listened to coyotes howling nearby. The meteors were pretty nice still, I saw one every minute, some just out of the corners of my eye. Most were white falling parallel to the northern and southern horizon. Two I saw were moving slow, red in colour, on the far Western horizon.

Contact Us


We’re a loose group of amateurs who either run the Sentinel system. or a radio detection system or both.

We communicate via emails when we see a bright fireball and did a quick poll that way.

We’d write “Did you see it at ##:## UT on sic and such date?”. Then wait for the other stations to say yes or no. We are not an organization, a club, or society.

We are a loose confederation/network of cameras operators and radio operators.

Bill and Glen started the educational outreach project on their own and that’s when Jeff decided to throw a web together, to assist them by providing an example of what school boards could do for their teachers and kids. I think this is a very worthy project and would like the website to be part of our ‘mission’.

When Sandia Labs changed to the latest system, WSentinel, they added the capability to rsync our captures to NMSU for display.

Some of our members do not participate with the NMSU side of it or they stayed with their old frame grabber system so they can not send data to NMSU.


Hopefully Bill Cooke will let us start sending data to the fireball site but so far we after Ed and I asked to join the asgard network.

Right now Ed and my asgard data are stacking up in isolation on our hard drives.

Once Ed and I through the vetting process we will be sending data directly to the nasa fireball web site.

At that time we’re going to try and get the other camera operators to join us with asgard so we can produce meaningful data for NASA and IMO and AMS.


We have just gone operational with ASGARD. We plan to stream our captures to our site but that’s down the road.

Phone: +1-250-598-6692
Email:Jeff Brower  jbrower@meteorchaser.net


College of the Rockies Cranbrook Campus

College of the Rockies–COTR

Located in the East Kootenays in the South-eastern corner of BC, along the Rocky Mountain Trench. We recently placed an AllSky camera on the roof of our Cranbrook main campus.

In the Science department we offer University Transfer 1st and 2nd year courses, as well as Grade 11 and 12. Astronomy, Biology, Chemistry, Geology, Geography, Physics, Mathematics and Computer Science.

Our Astronomy 100 course boasts a Celestron CPC1100 11 inch Schmidt-Cassegrain, a 10″ Meade LX200, a 13″ Dobsonian and a number of smaller 4.5″ Newtonians. We do constellation (and meteor) photography with Nikon D100 digital cameras.

Rick Nowell
Physics Lab Tech

College of the Rockies (COTR) in Cranbrook BC

COTR Observation Station: Some Calibration and Technical Info:

The College of the Rockies Astronomy department has a Sentinel IV AllSky Meteor camera running under WSentinel video capture software ver 1.1.11. The College is located at Cranbrook BC, in the SouthEastern corner of BC. Our Camera coordinates are N49° 31′ 03.1″, W115° 44′ 37.1″, at an elevation of 940.0m (within 10cm).

The Sample Photo shows what our black and white rooftop camera sees, the lights of Cranbrook to the West, along the bottom of the photo. There are some red beacons flashing on the surrounding mountains, the one at 12 o’clock position marks roughly North (about 3 degrees True). The double-beacon at the 1:30 position marks a TV/Cell Tower at 309 degrees. The fisheye lens can view all around the horizon. The twin pine trees at the 7 o’clock position are in the College’s South parking lot. There’s a exhaust vent that shades the camera from some bright lights over to the East. Although the housing has been leveled to within 0.3 deg, the camera is tilted 5 degrees inside, and results in an elliptical rather than a circular horizon. The ratio of major to minor axes is 1.10.

Top View of StarLight B/W CCD Camera, Dome Off
Top View of StarLight B/W CCD Camera, Dome Off
We use a Starlight B/W CCD, a HiCam HB-710E [http://www.hicam.co.kr/main/710.htm] ultra-low light-level (0.0003 lumens) video camera (with 1/2” CCD sensor, 768×494 effective pixels), with the Rainbow L163VDC4P fisheye lens (1.6~3.4mm F1.4 – with mechanical auto-iris). Video is fed to an ATI All-in-Wonder video capture card on a Windows XP computer at 640×480 pixels, 29.97 frames/second. There’s about 18 hot pixels in the CCD sensor, so those are not all stars shown in the photo. Available is a photo of the inside of the lenscap revealing the hotpixels. This is normally used when you’re “stacking” the video frames and want to subtract out the hotpixels and background levels. Hot Pixels in the Sony CCD sensor PNG file.

Photo Reference Points: in the photo there is a flashing dot at the 12 o’clock position that marks 3 degrees true. In the photo, note the top of Woodteck Hill has a rotating beacon. This hilltop is located at N 49°34’18”; W115°44’22”; at elevation of 3,421′(1,043m). From the college, this would be 6.0 km away at a bearing of 2.9 degrees, altitude 1.0 degrees up from the horizon.

Radio Beacon North of Camera
Radio Beacon North of Camera

Starmap and Photo side-by-side
Cassiopeia and Beacon at 3 degrees North
Photo was taken at 18 May 2011 at 23:30:52 Mountain Daylight Time. Starmap generated by Meade Autostar Suite Astronomers Ed ver 3.19 2005

Photo and Starmap merged
Photo and Starmap merged
Auriga Starmap Superimposed on Beacon Photograph
Auriga Starmap Superimposed on Beacon Photograph
The pair of tower beacons at the 5 o’clock position, their centre point bearing 309°, are located 5.25 km distant at an elevation of 4,000 feet. The television tower is marked at 100 feet tall. Thus a total of about 4,100 feet (1,250m) at an angle of 3.0 degrees up from the horizon. Found on an older topographical map, 82G/12 dated 1980, 1:50,000 Scale, at N49°32’47”, W115°48’00”. The newer topographical maps don’t show the towers. The photo was taken 18May2011 at 23:35:50 MDT, and superimposed on a Autostar Suite 3.19 starmap adjusted to show the horizon at that time and location. At that time, the star Elnath in Auriga is located at (alt +3.0 °, az 312.8 °) The beacons are the same altitude as Elnath, at +3.0 degrees. No correction has been made for atmospheric refraction.

Time is synchronized to a College Network time server (since the end of August) and stays within 0.1 second of world time. Previous to that, it was slow by up to a minute.

Our AllSky camera was supplied by Richard Spalding of Sandia National Labs, in New Mexica, USA. Dick Spalding’s all-sky-all-the-time camera development is described at http://www.sandia.gov/LabNews/LN11-29-02/labnews11-29-02.pdf.

For more info, contact Rick Nowell at nowell@cotr.bc.ca

Mile 108 Elementary School

Located on Highway 97 in the British Columbia Cariboo-Chilcotin area, Mile 108 Elementary School is the site of the second AllSky camera located in School District #27 (Cariboo-Chilcotin). This camera will provide overlapping coverage with cameras in Prince George, Tatla Lake, Kelowna, Penticton, and Osoyoos, thereby increasing the likelihood of a multiple site common capture.

SNOTEL An Alternative to TV Video Carriers

For forward scatter observers the SNOTEL Meteor burst system can be a viable substitute of RF when the Canadian analog TV stations are phased out. Currently this phaseout is scheduled for sometime in 2011. The US stations have already made the jump form analog to digital.

SNOTEL, is an acronym for Snowpack Telemetry.  It began operation in the 1970’s and is run by the Natural Resources Conservation Service (NRCS). For complete description of the system visit the general information page at the home site at:


A quick search of the net will also bring up many hits on this system.

For our purpose we are not interested with the remote slave stations, rather we want to listen for the RF reflected from meteors from the two master stations transmitters. The stations are located near Boise, Idaho and Ogden, Utah and operate on a frequency of 40.530 MHz and run at a power of about 1,500 watts. Two types of encoding are used, a 90 degree FSK for the first ~ 10 seconds of each minute then a 30 degrees FSK for the rest of the minute.

Listen to SNOTEL signal recorded from West Kelowna during intense Es on 2009-06-23 1648 UT. During none sporadic periods expect to hear only brief pings from under dense echoes. Both SNOTEL stations put in strong echoes in southern British Columbia.

More details to come.







Dominion Astrophysical Observatory


Dave Balam will be editing this page soon.  In the mean time he sent some images representing the current all-sky time lapse camera at the DAO. A Sentinel unit will be added once Sid is available to install it.

Dave does have some images that show the capabilities of their current all-sky camera. The camera is on line an updated every minute at:



A mosaic_2009_10_24 – an 8 hour stretch (1 hour per individual stack) of the sky on 2009 Oct. 24/25. The objects marked with blue boxes are meteor trails.


Image: meteor_100217 – a meteor trail seen through the clouds before dawn on 2010 Feb 17.


Image: meteor_2009_10_25_01_24_13 – a bright meteor trail from 2009 Oct. 25

More to come in the weeks to follow.